Kinetics of *cis*-[Ru(R-phen)(dcbH₂)(NCS)₂] formation: effect of the phenanthroline substituent on the rate of first intermediate formation

Andressa V. Müller (PG), André S. Polo (PQ)*.

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC - UFABC, Av dos Estados, 5001, 09210-580, Santo André - SP, Brazil.

*andre.polo@ufabc.edu.br

Keywords: Ru(II) tris-heteroleptic compounds, coordination chemistry, formation kinetics.

Abstract

The [Ru(R-phen)(p-cymene)Cl] intermediate formation rate depends on the electron donating or withdrawing character of R.

Introduction

Ruthenium(II) *tris*-heteroleptic [Ru(L)(dcbH₂)(NCS)₂], L = polypyridyl ligand and dcbH₂ = 4,4'-dicarboxylic acid-2,2'-bipyridine have been employed as dyesensitizers in DSSCs.^{1,2} The synthesis of these compounds can be achieved by a one-pot procedure, starting from the precursor [Ru(p-cymene)Cl₂]₂ dimer and L in N,N-dimethylformamide (DMF), Figure 1.³ In this work, the activation energies and formation rates of the [Ru(R-phen)(p-cymene)Cl] intermediate, phen = 1,10-phenanthroline and R = MeO, Me, Ph, H or Cl on its 4 and 7 positions, were evaluated in terms of the electron donating or withdrawing character of R.

Figure 1. First step proposed for *cis*-[Ru(R-phen)(dcbH₂)(NCS)₂] formation.

Results and Discussion

Experiments were carried out in pseudo-first order in relation to [Ru(p-cymene)Cl₂]₂ and absorption changes were followed up to 20 min, from 15°C to 30°C. The observed rates (kobs) determined for each experiment were plotted vs. [R-phen] to determine the second order rate constants (k_{so}), which was plotted vs. 1/T to result in the activation energies (E_a) The effect of the R groups was evaluated by plotting the E_a values vs. the Hammett constant (σ_p^+), Figure 2. Increase in E_a is observed as a function of σ_p^+ . This trend can be correlated with a higher electron density on the nitrogen atoms of the ligand, which favors the coordination to the Ru(II) center. The kobs vs. [R-phen] plots, Figure 3, demonstrate the rates dependence on the R substituent, which agree to an associative character mechanism.

Figure 2. Activation energies of the intermediate [Ru(R-phen)(p-cymene)CI] formation as a function of the σ_p^+ constant for the R substituent.

Figure 3. k_{obs} dependence on [R-phen]. T = 298 K.

Conclusions

The electron donating character of the substituent on the 4 and 7 positions of the 1,10-phenanthroline ring increases the basicity of the nitrogen atoms and consequently increases the reaction rates. The Rphen coordination is in accordance to an associative character mechanism.

Acknowledgements

FAPESP (2015/00605-5 and 2013/25173-5).

¹ Carvalho, F.; Liandra-Salvador, E.; Bettanin, F.; Souza, J. S.; Homemde-Mello, P.; Polo, A. S. *Inorg. Chim. Acta* **2014**, *414*, 145.

² Müller, A. V.; Mendonça, P. S.; Parant, S.; Duchanois, T.; Gros, P. C.; Beley, M.; Polo, A. S. *J. Braz. Chem. Soc.* **2015**, *26*, 2224.

³ Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M. *Nat Mater* **2003**, *2*, 402.